
Custom objects beta

Freshworks customers have real-world data modelling requirements, all of which cannot be met
by a product’s native objects. The products offer custom fields to extend the existing native
objects. At times, customers need entities that are related to native objects but do not exist within
the product. Custom objects help meet this requirement. Through the use of an app, custom
objects, and their relationships to native objects (associations) customers can create and use
entities that act as part of the product itself, to meet specific functional requirements.

Apps that consume the default native objects or custom fields that the Freshworks products offer,
can use the developer platform’s data storage feature. For a long time, the developer platform
supported only key-value storage. This poses certain limitations in terms of key size, value field
size, reverse look-ups, and capabilities to query, aggregate, report, and relate data. As part of the
custom objects functionality, the developer platform offers entity storage in addition to the
existing key-value storage. Entity storage helps provide capabilities such as reporting and
aggregation of stored data, look up, retrieval, and usage of relational information, querying on
stored data, and so on.

Note : Custom objects created as part of the Freshdesk in-product experience or through a custom
app (as specified in this document) cannot be accessed by another app.

To create and use custom objects,

1. Define entities.
2. As part of the app code, use the custom objects interface to create entity records.
3. As part of the app code, define the necessary actions or operations on the entity records.

Sample use case - Relational information: Restaurant cataloguing for a food delivery business
that uses Freshdesk. The business has photography vendors who visit restaurants based on a
schedule. Restaurants send their request to Freshdesk, as a ticket (native object). An app using
custom objects (restaurants and vendor availability), maps the request to vendors and schedules a
visit.

Note : Custom objects beta supports building custom apps for Freshdesk accounts. Currently, it
does not support defining associations between custom and native objects.

Confidential and proprietary information of Freshworks Inc.

https://support.freshdesk.com/support/solutions/articles/50000002890-custom-objects-overview

Define entities
In Freshworks products, business data is modelled as objects. The objects are created out of
specific object types. An entity is an object type. Entity definition is the schema definition of the
object type. Schema definition includes the definition of all the object. attributes . Tickets,
Contacts, Users, Agents, and so on are some default native objects. tickets. description ,
tickets. status and tickets. priority are some of the attributes of the ticket entity.

You can use the custom objects feature to define new entities (object types). Entity records
(objects) of the defined object types can be created and an app can process these records to
provide meaningful results.

Entity definition includes the following:

1. Define the custom object schema - Entity definition specification . The schema includes
all object. attribute definitions.

2. Initiate entity storage .
3. Obtain a reference to the entity to facilitate schema and record operations.

Note : After an app is published, the entity definition cannot be modified or updated. To modify
entities, modify the requisite files and submit the app as a new app.

Entity definition specification

1. From the app’s root directory, navigate to the config folder and create an entities.json
file.

2. In the entities.json file, use the following syntax to configure all custom objects that the
app uses, as JSON objects.

Notes :
1. You can define a maximum of five entities for each business account.
2. You can define a maximum of 20 fields (attributes) for each entity.

{
 "<entity-name>": {
 "fields": [{
 "name": "<attribute-name1>",
 "label": "<display-text>",
 "type": "<data type>",

 ...

Confidential and proprietary information of Freshworks Inc.

 },
 {
 "name": "<attribute-name2>",
 "label": "<display-text>",
 "type": "<data type>",
 "filterable": <true/false>
 },
...
]
 },
 "<entity-name1>": {
 "fields": [{
 "name": "<attribute-name1>",
 "label": "<display-text>",
 "type": "<data type>"
 },
 {
 "name": "<attribute-name2>",
 "label": "<display-text>",
 "type": "<data type>",
 "filterable": <true/false>
 },
...
]
 }
}

Confidential and proprietary information of Freshworks Inc.

File attribute Data type Description

<entity-name> object Schema definition of the custom
object. An app can create records of
type <entity-name> and process the
records.

For example, for an app to create a
custom object restaurants ,
<entity-name> in entities.json is
restaurants .

The app and its users can create
multiple records or objects of type
restaurants. Each record is a
collection of attributes. In
entities.json , specify the attributes’
definition through the fields array.

fields

Mandatory

array of field objects All attributes of the custom object,
specified as an array. Each array
element contains a list of

 Attributes of field object

Confidential and proprietary information of Freshworks Inc.

Child attribute of <entity-name> child-attributes that define the
custom object. attribute .

Attribute name Data type Definition

name

Mandatory

This is an alphanumeric
field and can contain
underscores. Must start
with an alphabetic
character.

string Identifier of the attribute.

When creating, programmatically storing objects,
and querying data belonging to a specific entity
(object type), ensure to use the exact fields. name
that is specified in the schema.

label

Mandatory

string Default display name for the attribute when it is
exposed through a front-end component.

In the app files that render the app’s front-end
components, if a different value is specified as
the label for the input field, the values in the
front-end files take precedence.

type

Mandatory

string Data type of the attribute.

Possible values :

● TEXT : An attribute of this type accepts
text data of upto 64 characters as input.

● PARAGRAPH : An attribute of this type
accepts long text data as input.
PARAGRAPH type attributes are not
filterable. Maximum possible input length
is 2048 characters.

● NUMBER : An attribute of this type
accepts long numeric whole number data
as input. Maximum possible input length
is 15 digits.

● DECIMAL : An attribute of this type
accepts floating numeric data as input.
Maximum possible input length is 15
digits.

Sample entities.json
{
 "restaurants": {
 "fields": [{

 "name": "restaurant_name",
 "label": "Name",
 "type": "TEXT",

 "required": true
 },
 {
 "name": "short_code",
 "label": "Short-Code",
 "type": "TEXT",
 "filterable": true,

 "required": true

Confidential and proprietary information of Freshworks Inc.

● DATE_TIME : An attribute of this type

accepts ISO-8601 date format as input.
DATE_TIME attribute types do not
accept empty strings as input.

● CHECKBOX : An attribute of this type
accepts boolean data - true or false as
input. CHECKBOX type attributes are
not filterable.

filterable boolean Specifies whether a subset of the stored records
can be retrieved by specifying filter conditions
for the attribute.

Notes :
1. NUMBER , TEXT , and DATE_TIME

type attributes are filterable.
2. You can define a maximum of five

filterable fields in the schema definition.

Default value : false

required boolean Specifies whether the attribute is a mandatory
attribute of the custom object.

When creating and updating records, ensure that
the calls to the custom objects interface contain
valid values for the attributes whose required
value is true .

Default value : false

 },
 {
 "name": "description",
 "label": "Description",
 "type": "PARAGRAPH"
 },
 {
 "name": "photo_url",
 "label": "Photo URL",
 "type": "PARAGRAPH"
 },
 {
 "name": "location_pin",
 "label": "Address (Google Maps Link)",
 "type": "PARAGRAPH"
 },
 {
 "name": "status",
 "label": "catalog_status",
 "type": "TEXT",
 "filterable": true
 }
]
 },
 "appointments": {
 "fields": [{
 "name": "restaurant_id",
 "label": "Restaurant ID",
 "type": "TEXT",
 "filterable": true
 },
 {
 "name": "restaurant_info",
 "label": "Restaurant Info",
 "type": "PARAGRAPH"
 },
 {
 "name": "ticket_id",
 "label": "Ticket ID",
 "type": "TEXT",
 "filterable": true
 },
 {
 "name": "appointment_date",
 "label": "Appointment Date",
 "type": "DATE_TIME"
 },
 {
 "name": "booked_slot",
 "label": "Booked Slot",
 "type": "NUMBER",
 "filterable": true
 },
 {

Confidential and proprietary information of Freshworks Inc.

 "name": "notes",
 "label": "Notes",
 "type": "PARAGRAPH"
 }
]
 }
}

Initiate entity storage

The developer platform’s data storage feature offers a client.db or $db interface to store and
retrieve data. For custom objects, the interface is enhanced beyond its lightweight key-value
storage capabilities to support entity storage. This facilitates custom object schema creation and
deletion and CRUD operations on the records. Currently, the entity storage is accessible through
a versioned interface that specifies that the app uses the v1 version of the entity storage feature.

To initiate entity storage and start using the custom objects interface, use the following
constructor:

Sample frontend or client-side file
const entity = client.db.entity({ version: 'v1' });

Sample server.js
const $entity = $db.entity({ version: 'v1' });

Response : The constructor returns a versioned wrapper interface that can be used for custom
objects operations.

Obtain a reference to the entity
To obtain a reference to the entity, use one of the following interface calls:

const <entReference> = entity.get('<entity-name>');
const <entReference> = $entity.get('<entity-name>');

Sample frontend or client-side file
const restaurant = entity.get('restaurants');

Sample server.js
const restaurant = $entity.get('restaurants');

Confidential and proprietary information of Freshworks Inc.

https://developers.freshdesk.com/v2/docs/data-storage/

Response : A successful call returns a class that represents the entity and contains the static
methods that can be used to perform operations on the entity records.
{
 schema: async function() {},
 create: async function() {},
 get: async function() {},
 getAll: async function() {},
 update: async function() {},
 delete: async function() {}
}

Create entities
The fdk validate and fdk pack commands validate the entities.json file, to ensure that the Entity
Definition Specifications are appropriate. You can test entities creation and record operations
before submitting the app.

App installation implicitly creates the entities specified in entities.json .

Retrieve entity schema
To verify the entity creation and view the schema of the created entity, use one of the following
interface calls:

Note : <entReference> is a reference to the actual entity.

<entReference>.schema();
$entity.get('<entity-name>').schema();

Sample front-end or client-side file
restaurant.schema();

Sample server.js
$entity.get('restaurants').schema();

Response : A successful call returns the entity object created based on entities.json specification,
along with the following meta-data:

● id : Unique numeric identifier of the entity, auto-generated by the developer platform
when the entity is created and stored.

● name : <entity-name> as specified in entities.json .
● prefix : Prefix associated with the entity and used in internal interface calls to uniquely

identify entities, auto-generated by the developer platform when the entity is created.

Confidential and proprietary information of Freshworks Inc.

Sample response
{
 "entity": {
 "id": 59126,
 "name": "restaurants",
 "prefix": "scshv",
 "fields": [{
 "name": "restaurant_name",
 "label": "Name",
 "type": "TEXT",

 "required": "true"
 },
 {
 "name": "short_code",
 "label": "Short-Code",
 "type": "TEXT",
 "filterable": true,

 "required": "true"
 },
 {
 "name": "description",
 "label": "Description",
 "type": "PARAGRAPH"
 },
 {
 "name": "photo_url",
 "label": "Photo URL",
 "type": "PARAGRAPH"
 },
 {
 "name": "location_pin",
 "label": "Address (Google Maps Link)",
 "type": "PARAGRAPH"
 },
 {
 "name": "status",
 "label": "catalog_status",
 "type": "TEXT",
 "filterable": true
 }]
 }
}

For information on the fields array, see Attributes of field object .

Delete entities

App uninstallation clean slates data and implicitly deletes the entities definition.

Confidential and proprietary information of Freshworks Inc.

Define record operations
Through the app and its components, multiple records (objects) of a specific entity type can be
created. These records provide data that can be processed by the app. As part of processing the
data, the app can programmatically perform the following operations on the records:

● Create records .
● Update a record .
● Retrieve records.

○ Retrieve the data of a specific record
○ Retrieve all records .
○ Apply filters and retrieve specific records .

● Delete a record .

The operations are performed through the custom objects interface, which returns promises.
Successful calls return responses with requisite data and the following:

 Response meta-data
● display_id : Unique identifier of a record, auto-generated when the record is created. It is

a combination of the prefix used to identify the entity and an incremental numeric value
that uniquely identifies the record.

● created_at : Timestamp of when the record is created, specified in the ISO-8601 format.
● updated_at : Timestamp of when the record is last updated, specified in the ISO-8601

format.

Create a record
To create a record belonging to a specific entity, use one of the following interface calls:

Notes :
1. A maximum of 10k records can be created for each entity. Currently, batch

operations/bulk record creation is not supported.
2. Each record can be of maximum 100 kb.
3. <entReference> is a reference to the actual entity.

<entReference>.create({
 <fields.name1>: <valid value for fields.name1>,
 <fields.name2>: "<valid value for fields.name2>"

Confidential and proprietary information of Freshworks Inc.

});

For serverless apps
const record = await $entity.get('<entity-name>')
 .create({
 <fields.name1>: <valid value for fields.name1>,
 <fields.name2>: "<valid value for fields.name2>"
});

Sample front-end or client-side file
restaurant.create(newRestaurant)
 .then(function (data) {
// Success message
 })
 .catch(function (error) {
 // Error handling
 })

Sample payload (data)
{
 "restaurant_name": "Barbq Nation",
 "short_code": "BBQN",
 "description": "Unique dining experience",
 "photo_url": "path/img.src",
 "location_pin": "600105",
 "status": "1"
 }

Response : A successful create operation, returns the record object created based on the input and
the corresponding meta-data . record.data contains the JSON object that is stored as the record
text.

Sample response
{
 "record":
 {
 "display_id": "scshv-2",
 "created_time": "2020-12-09T11:24:47.230Z",
 "updated_time": "2020-12-09T11:24:47.230Z",
 "data": {
 "restaurant_name": "Barbq Nation",
 "short_code": "BBQN",
 "description": "Unique dining experience",
 "photo_url": "path/img.src",
 "location_pin": "600105",
 "status": "1"
 }
 }
}

Confidential and proprietary information of Freshworks Inc.

 Update a record
To update a record belonging to a specific entity, use one of the following interface calls:

Notes :
1. <entReference> is a reference to the actual entity. <display-id> is the unique

identifier of a record, auto-generated when the record is created. <display-id> is
returned as part of the response to a successful create record operation.

2. Ensure that all attributes specified as required in entities.json are passed as part of
the request call payload.

<entReference>.update("<display-id>", {
 <fields.name1>: <valid value for fields.name1>,
 <fields.name2>: "<valid value for fields.name2>"
});

For serverless apps
const record = await <entReference>.update('<display-id>', {
 <fields.name1 of the field to be updated>: <valid value for fields.name1>,
 <fields.name2>: "<valid value for fields.name2>"
});

Sample app.js
restaurant.update("scshv-2", {

 "restaurant_name": "Barbq Country",

 "short_code": "BBQC",
});

Response : A successful update operation, returns the record object updated based on the input
and the corresponding meta-data . record.data contains the JSON object that is stored as the
updated record text.

Sample response
{
 "record":
 {
 "display_id": "scshv-2",
 "created_time": "2020-12-09T11:24:47.230Z",
 "updated_time": "2020-12-09T11:28:00.111Z",
 "data": {
 "restaurant_name": "Barbq Country",
 "short_code": "BBQC",
 "description": "Unique dining experience",
 "photo_url": "path/img.src",
 "location_pin": "600105",
 "status": "1"
 }

Confidential and proprietary information of Freshworks Inc.

 }
}

Retrieve a record
To retrieve a specific record belonging to a specific entity, use one of the following interface
calls:

Note : <entReference> is a reference to the actual entity. <display-id> is the unique
identifier of a record, auto-generated when the record is created. <display-id> is
returned as part of the response to a successful create record operation.

<entReference>.get("<display-id>");

For serverless apps
const record = await $entity.get('<entity-name>').get('<display-id>');

Sample front-end file
restaurant.get("scshv-2");

Response : A successful retrieve by display-id operation, returns the retrieved record object and
the corresponding meta-data . record.data contains the JSON object that is stored as the record
text.

Sample response
{
 "record":
 {
 "display_id": "scshv-2",
 "created_time": "2020-12-09T11:24:47.230Z",
 "updated_time": "2020-12-09T11:28:00.111Z",
 "data": {
 "restaurant_name": "Barbq Country",
 "short_code": "BBQC",
 "description": "Unique dining experience",
 "photo_url": "path/img.src",
 "location_pin": "600105",
 "status": "1"
 }
 }
}

Confidential and proprietary information of Freshworks Inc.

Retrieve all records
To retrieve all records belonging to a specific entity, use one of the following interface calls:

Note : <entReference> is a reference to the actual entity.

<entReference>.getAll();

For serverless apps
const records = await <entReference>.getAll({});

Sample front-end file
function loadRestaurants() {

 restaurant.getAll()

 .then(function (data) {

 //render details of all restaurants as a list

 })

 .catch(function (error) {

 //error message

 })

}

Response : A successful retrieve all records operation, returns the retrieved records as an array of
objects. The retrieved records are not paginated and are retrieved in sets of 100 records. The
links attribute in the response provides a token to retrieve the next set of records.

Sample response
{
 records: [{
 "display_id": "scshv-1",
 "created_time": "2020-12-09T11:24:47.230Z",
 "updated_time": "2020-12-09T11:28:00.111Z",
 "data": {
 "restaurant_name": "Hotel1",
 "short_code": "HT1",
 "description": "Only takeaways",
 "photo_url": "path/img1.src",
 "location_pin": "600123",
 "status": "1"
 }
 },
 {
 "display_id": "scshv-2",
 "created_time": "2020-12-09T11:28:47.230Z",
 "updated_time": "2020-12-09T11:30:00.111Z",
 "data": {
 "restaurant_name": "Barbq Country",
 "short_code": "BBQC",

Confidential and proprietary information of Freshworks Inc.

 "description": "Unique dining experience",
 "photo_url": "path/img.src",
 "location_pin": "600105",
 "status": "1"
 }
 }
],
 links: {
 next: {
 marker: "Lbr2zerj3WHNDsZ1NsdFj7NiigDlittVkGc7RmPjKF3"
 }
 }
}

Response attributes

Confidential and proprietary information of Freshworks Inc.

Attribute Data Type Description

records array of objects All retrieved records belonging to a
specific entity, specified as an array of
objects. Each array element is an object
with the following attributes:

● display_id : Unique identifier of
a record, auto-generated when
the record is created. It is a
combination of the prefix used
to identify the entity and an
incremental numeric value that
uniquely identifies the record.

● created_at : Timestamp of when
the record is created, specified
in the ISO-8601 format.

● updated_at : Timestamp of
when the record is last updated,
specified in the ISO-8601
format.

● data : JSON object that is stored
as the record text.

links link object Link to the next set of records.

Attribute of the link object :

next (object): Identifier of the next set

Sample call to retrieve a succeeding set of records
function loadRestaurants() {

 restaurant.getAll({

 next: {

marker: "Lbr2zerj3WHNDsZ1NsdFj7NiigDlittVkGc7RmPjKF3"

}})

 .then(function (data) {

 //render details of all restaurants as a list

 })

 .catch(function (error) {

 //error message

 })

}

Response : The marker value, in the call, is an encoded token of a record id. A successful call
retrieves the next set of records, starting from the record identified by the marker value. The
marker value of the last set of records is null .

Apply filters and retrieve specific records
You can include queries as part of the retrieve all records call and thereby specify filter criteria
for the filterable fields. On successful processing of the call only specific records that satisfy the
criteria are retrieved.

To specify queries as part of the interface call, use the following format:

Notes :
1. When filtering by a DATE_TIME field, ensure that the filter criteria is specified in

the ISO-8601 format. Range querying on DATE_TIME fields is currently not
supported.

2. <entReference> is a reference to the actual entity.

<entReference>.getAll({

Confidential and proprietary information of Freshworks Inc.

of records, in the following key: value
format:

marker: "<identifier string>"

If there are only one set of records, the
marker value is null .

 query: {
 <filterable field-name>: "<filter criteria value>"
 }
});

For serverless apps
const record = await <entReference>.getAll({
 query: {
 <filterable field-name>: "<filter criteria value>"
 }
});

To use the and or or operations to construct a query with multiple query parameters, use the
following samples:

Notes :
1. When constructing a query with multiple query parameters, a minimum of two query

parameters and a maximum of three filterable fields or query parameters should be
used.

2. In an and operation, ensure that the attributes (filterable fields) used are different.
3. In an or operation, ensure that the attributes (filterable fields) used are the same.
4. Nested queries are not supported.

Sample 1 - $or query construct
Front-end file
const record = restaurant.getAll({
 query: {
 $or: [
 {
 location_pin: "600123"
 },
 {
 location_pin: "600106"
 }
]
 }
 }).then(function(data){
 // access to filtered restaurant details
 }).catch(function(data){
 // Handle errors
 })

server.js
const record = await restaurant.getAll({
 query: {
 $or: [
 {
 location_pin: "600123"
 },
 {

Confidential and proprietary information of Freshworks Inc.

 location_pin: "600106"
 }
]
 }
});

Response: A successful retrieve all records operation with filters, returns the records that meet
the filter criteria as an array of objects.
Sample response
{
 records: [{
 "display_id": "scshv-1",
 "created_time": "2020-12-09T11:24:47.230Z",
 "updated_time": "2020-12-09T11:28:00.111Z",
 "data": {
 "restaurant_name": "Hotel1",
 "short_code": "HT1",
 "description": "Only takeaways",
 "photo_url": "path/img1.src",
 "location_pin": "600123",
 "status": "1"
 }
 }],
 links: {
 next: {
 marker: "Lbr2zerj3WHNDsZ1NsdFj7NiigDlittVkGc7RmPjKF3"
 }
 }
}

Response attributes

Confidential and proprietary information of Freshworks Inc.

Attribute Data Type Description

records array of objects All records belonging to a specific
entity and meeting the filter criteria,
specified as an array of objects. Each
array element is an object with the
following attributes:

● display_id : Unique identifier of
a record, auto-generated when
the record is created. It is a
combination of the prefix used
to identify the entity and an
incremental numeric value that
uniquely identifies the record.

 Sample 2 - retrieve subsequent sets of filtered records
const record = await restaurant.getAll({
 query: {
 $or: [
 {
 location_pin: "600123"
 },
 {
 location_pin: "600106"
 }
]
 },
 next: {
 marker: "Lbr2zerj3WHNDsZ1NsdFj7NiigDlittVkGc7RmPjKF3"
 }
});

Sample 3 - $and query construct
const record = await $entity.get('restaurants').getAll({

Confidential and proprietary information of Freshworks Inc.

● created_at : Timestamp of when
the record is created, specified
in the ISO-8601 format.

● updated_at : Timestamp of
when the record is last updated,
specified in the ISO-8601
format.

● data : JSON object that is stored
as the record text.

links link object Link to the next set of records.

Attribute of the link object :

next (object): An identifier of the next
set of records, specified in the
following key: value format:

marker: "<identifier string>"

To access the next set of records, use
the same interface call along with the
same query and specify the marker as
shown in Sample 2 .

 query: {
 $and: [
 {
 location_pin: "600123"
 },
 {
 short_code: "HT1"
 }
]
 },
 next: {
 marker: "Lbr2zerj3WHNDsZ1NsdFj7NiigDlittVkGc7RmPjKF3"
 }
});

Delete a record
To delete a specific record belonging to a specific entity, use one of the following interface calls:

Notes : <entReference> is reference to the actual entity. <display-id> is the unique
identifier of a record, auto-generated when the record is created. <display-id> is
returned as part of the response to a successful create record operation.

<entReference>.delete("<display-id>");

For serverless apps
const record = await <entReference>.delete('<display-id>');

Sample front-end file
restaurant.delete("scshv-2");

Response : A successful delete operation returns an empty object.

Error responses
If a call fails, the custom objects interface returns an error response similar to following sample:
{
 "message": "Invalid input field",
 "status": 400,
 "errors": [
 {
 "message": "Field name should be of type string",
 "name": "label"
 }
],
 "errorSource": "APP"
}

Confidential and proprietary information of Freshworks Inc.

Error response attributes

Test

Note : To test your app, use the latest version of the Chrome browser

1. To test the configured custom objects, from the command prompt navigate to the app
project folder and run the following command:

fdk run

The command validates the entities.json file and displays the validation errors, if any.
Fix the validation errors and run the command. The command creates a .sqlite file and
the entities that are defined in entity.json . .sqlite mimics the platform’s entity storage, in
the local setting.

Note : If the entity definition specification in entities.json is modified, for the
modification to reflect in the local .sqlite file, you will have to rerun the fdk run

Confidential and proprietary information of Freshworks Inc.

Attribute name Data type Description

message string Generic message specifying the reason for the
error.

status number HTTP status code.

errors array of error objects All errors that caused the call to fail, specified
as an array.

Attributes of the error object :
● message (string): Specific validation

error.
● name (string): Name of the entity

field whose validation failed.

errorSource string Specifies whether the error is app or platform
related.

Possible values : APP , PLATFORM

command. A prompt to resync is displayed and a resync deletes all existing entities,
associated data, and records and creates a clean instance.

2. Log in to your Freshdesk account.

3. To the Freshdesk account URL, append ?dev=true .

Example URL : https://subdomain.freshdesk.com/helpdesk/tickets/1?dev=true

If the app is successfully created, it is rendered in the app location specified in
manifest.json .

4. To test the custom objects interface calls, from the app, simulate record operations. If the
calls fail, appropriate error responses are displayed.

Confidential and proprietary information of Freshworks Inc.

